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ABSTRACT 

 

For a Periodic Vehicle Routing Problem (PVRP), this study offers a new mathematical model which 

optimizing vehicle travel expenses based on many assumptions. Periodic planning includes consideration of 

the following four issues that is a vehicle routing problem with time windows (VRPTW), a capacitated 

vehicle routing problem (CVRP), a vehicle routing problem with split service (VRPSS) and a vehicle 

routing problem with simultaneous pickup and delivery (VRPSPD). In large-scale issues, the computational 

complexity of this problem can be handled by any optimization program in a reasonable amount of time 

since it is based on a single model that we have created. In this paper a neighborhood search meta-heuristic 

is proposed. 
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1. INTRODUCTION 

The vehicle routing problem (VRP) is a 

general issue for specifying homogenous sets of 

routes and vehicles, wherein every vehicle begins at 

a garage and travels alongside a path to service a 

number of clients with identified geographic 

positions, and returns back to the garage when tour 

ends. The service might be anything from 

delivering things to picking up items to name a few. 

An essential part of the VRP is the depot, which 

stores and employed the vehicles to transport items 

to and from the depot, and the clients who receives 

the items. Reducing the overall transport route price 

while adhering to thorough going working time and 

vehicle capability limits is a fundamental goal of a 

VRP [1]. In spite of this, there may be various gaps 

among the fundamental VRP, and real-life 

implementation, for instance, depots quantity, client 

needs numerous pickups and deliveries, vehicles 

type with varied travel durations, capacity and 

expanses of travel, path restrictions and time frames 

of vehicles and so on. Variations, formulations, and 

solution procedures of VRPs were all examined in- 

depth by [2]–[4]. 

In VRPs, Capacitated vehicle routing 

problem (CVRP) is the most often studied. Looking 

at a route’s overall demand and VRP with time 

windows(VRPTW) in order to make sure that the 

vehicle can handle it all [5] and [6]. [7] developed 

Open Vehicle Routing Problem (OVRP) with a 

novel mathematical model. The model utilizes 

reasonable time windows by means of which 

distributors want to serve clients sooner than 

competitors to maximize sales. They developed a 

multi-objective particle swarm optimization 

(MOPSO) approach as well as a widely used multi- 

objective evolutionary method (NSGA-II) was used 

to compare their outcomes. Extending vehicle 

routing models has also been attempted(for 

example several pickups and delivery positions 

VRP [8]–[10]. In addition, there is VRP with 

Simultaneous Pickup and Delivery (VRPSPD) 

wherein clients want both delivery and collection of 

items at the same time. There is a complete 

dynamic VRP model in [11], [12]. In the classical 

VRP, only one vehicle may service each node. 

Alternatively, more than one vehicle may service 

the client by numerous vehicles that pass through 

from that node. It is recognized as the VRP with the 

same split service (VRPSS) means that a service 

may be distributed across numerous vehicles [13]. 

Using VRP, one may come up with a 

schedule of services that is as cheap as possible 

[14]. A variation of VRP that develops routes is 

called PVRP. It was initially proposed as the 

Assignment Routing Problem in 1979, a 

mathematical model version of the Periodic Vehicle 
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Routing Problem (PVRP) [15]. Minimum numbers 

of visits are established as every day nodes are not 

visited. After that, research was refined to take into 

consideration number of days that individual node 

had been visited [16]. As a result of this, PVRP 

research developed exponentially. Numerous sorts 

of items have been studied using PVRP in the past. 

It demonstrates that these issues really occur on a 

daily basis. In PVRP study, a variety of materials 

were utilized as an insight such as distribution of 

vegetables [17], auto parts [18], collecting garbage 

[15], [19] ,beverage distribution [20], utility 

services [21], home health care (HCC) logistics 

[22], and many others. The majority of PVRP 

research has been focused on developing heuristic 

approaches for solving problems. Using the 

heuristic technique, you can come up with an 

acceptable solution to your issue, but you can’t be 

certain that you’ll obtain the best one [23]. 

Heuristics method may be useful when the number 

of customers serviced is enormous. Several 

researchers have been looking for a PVRP heuristic 

solution, like using variable neighborhood search 

[24], neighborhood search [25], particle swarm 

[26], hybrid genetic algorithm [27], hybridization 

of tabu search [22], hybrid metaheuristic algorithm 

[28], and large adaptive neighborhood [29]. 

Numerous advancements have been made in PVRP 

research. In terms of PVRP, there are three primary 

groups: multi-depot PVRP (MDPVRP), PVRP with 

time windows (PVRPTW), and PVRP with service 

choice (PVRP-SC) [30]. [21], [31]demonstrate the 

presence of multi-depot PVRP. [24], [25], [31]– 
[34] explain PVRP using time windows. PVRP-SC, 

on the other hand, refers to PVRP that allows 

number of visits to be used as judgment variable in 

discovering solutions, as in study [35]. It is claimed 

that PVRP-SC exhibits properties similar to those 

seen in the Inventory Routing Problem (IRP). 

PVRP-SC and IRP’s closeness to one another 

determines the visits frequency, arrangement of 

route, and deliveries in total[30]. The node’s 

schedule determines the PVRPSC attributes 

combination and the quantity of items sent to the 

node. Among the features of the IRP issue is 

quantity of deliveries at node is a decision variable 

varies from the number of visits [35]. FPVRP was 

used to develop this issue [35] by adding its flexible 

qualities to it [32]. The term “flexibility” refers to 

the ability to alter the frequency and number of 

visits. Flexibility was factored by [32] which gave a 

fresh viewpoint on modeling. Heuristic technique 

by [36] was one research that looked at flexibility. 

An FPVRP algorithm solution was found by [32] in 

two phases. Initial solutions were developed in the 

first phase, which was then followed by a tabu 

search process [37]. Additional advances in the 

two-tiered distribution channel with a flexible 

service time frame have been made [38]. Taking 

into consideration the consumer’s discount, a model 

was also designed which allows for more flexibility 

in delivery time [39]. 

The structure of the research article is 

maintained as follows. First, an overview of the 

topic and a review of relevant literature are the first 

items on the agenda. Section 2 defines the 

mathematical model, and Section 3 presents the 

suggested approach based on neighborhood search 

for resolving the presented issue. In section 4, 

calculations and results are presented. Lastly, 

Section 5 sums up the findings of this article and 

recommends prospective research avenues for 

further investigation. 

 

2. MODEL FORMULATIONS 

Following are some examples of how this 

model might be described. Let 𝐺 = (𝑉, 𝐴) be a 

chart     where     𝑉 = {𝑣0, 𝑣1, … , 𝑣n}      and     𝐴 = 
{(𝑣i, 𝑣j)|𝑣i, 𝑣j ∈ 𝑉, 𝑖 ≠ 𝑗} area set of arcs and a set 

of nodes, in that order. 𝐴 has two matrices, one for 

the expense of travel (𝑐ij) and one for the time it 

takes to get there (𝑡ij). Vertex 𝑣0 is a depot, while 

the other vertices represent 𝑛 clients. A set of 

permissible   visitation times for each client is 

represented by 𝐻i = {𝑆i1, … , 𝑆ih} and visitor 𝑆’s 

visitation schedule outlined by 𝑆 = {𝑙1, … , 𝑙T}; The 

customer’s demand on day 𝑑 is indicated by the 
variable 𝑙d (e.g., 𝑙d = 0 shows services to on day 𝑑 
of the customer), and number of days sets are 
shown in the form of time period 𝑇. Following are 
the notations used [40], [41]. 

 

2.1 Notations and variables 

𝑛 Clients total number 

𝑚 Vehicles total number 

𝑡 Days period 

𝑐ij Travel expense along arc (𝑖, 𝑗) 

𝑡ij Travel period along arc (𝑖, 𝑗) 
𝑂i Service period for client 𝑖 
𝑝d Pick up amount for client 𝑖 in 𝑑  the period 

of day 

𝑞d Delivery amount of client 𝑖 in 𝑑 the period 

of the day 

𝑄k Capacity of vehicle 𝑘 
𝐷k Time frames for vehicle 𝑘 to serve all clients 

𝑡min Lower limit of time frames for client 𝑖 
𝑡max Upper limit of time frames for client 𝑖 
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2.2 Decision variables 
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= 
1   if schedule Si  is selected for client i 

0 otherwise 

n  n+1 

xd  V 1;1  d T (13) 

 
 d 

Quantity of pick-up orders of client 𝑗 vehicle 
 

i=0 j=1 
ijk 

jk 

𝑘 served in 𝑑 day 
d d 

ijk ik isi 
{0,1}; (i, j, k, d ) (14) 

 d 
Quantity of deliveries orders of client 𝑗 

vehicle 𝑘 served in 𝑑 day 
d
 Initial service period of client 𝑗 by vehicle 𝑘 

in day 𝑑 

x
d    

= 
1   if vehicle k  serve client j immediately after client i in day d 

zd ,  d 
,  d 

{0,1, 2,...}; (i, j, k, d ) (15) 

Keeping the cost of the route to a 

minimum is the goal of this function. Constraints 

(1) and (2) make certain that each vehicle that 

comes at a client’s location needs to depart from 

that location as soon as feasible (1), this requires 
ijk 

 

 

 

d 

jk 

 
d 

ijk 

0 otherwise 

= 
1   if vehicle k  serve customer j in day d 

 

Vehicle 𝑘 Load while navigating arc (𝑖, 𝑗) in 

𝑑 day 

that each vehicle allocated to a client must service 

every single day (2). Constraint (3) is designed to 

avert capacity of the vehicle from exceeding limit 

as vehicle k travels the arc (𝑖, 𝑗), At a minimum, the 

relevant load (𝑧d ) should not surpass the capacity 

of vehicle (𝑄k). In order to meet the daily pickup 
and delivery needs of each client. Constraints (4) 

2.3 Mathematical model and (5) mandate the use of a vehicle transit system. 

min Z = 

s.t. 

T     n  n+1  T 

 
d =1 i =0 i=1 d =1 

 

d 

ij  ijk 

 

(1) 

The maximum time a vehicle may be in service is 

outlined in Constraint (6). After a client has been 

served, the vehicle’s load is balanced by constraint 
(7). Each vehicle must arrive at address of the 

n n+1 

 
j=0 

n 

d 

jik =  
j=1 

x
d
 ;1  i  n,1  k  m,1  d  T (2) customer within the time limit established by the 

node of constraint (8). Constraint (9) confirms if 
𝑥d   = 1, customer’s location 𝑗 must have an arrival x

d
 = y

d
 ;1  j  n +1,1  k  m,1  d T (3) ijk 

 ijk jk 
i=0 

z
d
  x

d
 Q ;1  i  n,1  k  m,1  d  T 

 
 

(4) 

time greater than the total of the customer’s 

location 𝑆i arrival times, customer 𝑖 time of service 

ijk ijk     k 

m 

and arc time of travel (𝑖, 𝑗). For each client, only 
one visitation schedule is available constraint (10). 

 d = p
d
 ;1  j  n,1  d  T (5) For each client, Constraint (11)  expresses in the 

jk j 

k =1  jk j 
number of days in their selected schedule, which 
will be made on a certain day if it does not fall 

 d 

k =1 

= q
d 

;1  j  n,1  d  T (6) may be supplied by many vehicles; or else, no visit 

 d   d   D ;1  k  n,1  d  T 
n n+1 zd  + (  d     d  ) = zd  ; 

(7) within the predetermined timetable. The sub-tour 

elimination constraint is represented by constraint (12). Last but not least, constraint (13) maintains 

 
i =0 

ijk jk jk  
i=1 

jik 
the integrality of the variables in the model. 

1  j  n,1  k  n,1  d  T 

t min   d  t max ; 

1  j  n,1  k  m,1  d  T 

 d + O + t   d  (1  xd
 ) M ; 

i  i, j  n,1  k  m,1  d  T 

(8) 

 

(9) 

 

(10) 

 

3. THE SOLUTION BASIC APPROACH 

Look at an example mixed integer linear 

programming (MILP) issue that has the succeeding 

structure. 

Minimize 𝑃 = 𝑐T𝑥 (12) 

 vis = 1;1  i  n 
s Si 

(11) Subject to 𝐴𝑥 ≤ 𝑏 (13) 

𝑥 ≥ 0 (14) 

𝑥j number for approximately 𝑗 ∈ 𝐽 (𝐽 is index set) 

(15) 

i 

m 

 

y 

z 

x 
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the basic feasible vector (𝑥B)k component 

in terms of MILP solution as uninterrupted shown 
below in equation 16 

( xB )k = 

k  k1 ( xN )1   kj ( xN ) j   k ,n  m ( xN )n  m 
(16) 

This statement can be seen in the Simplex 

method’s final tableau. For example, if (𝑥B)k 

would be an integer variable and we suppose k is 
not, the fractional and integer elements of k are 
provided by 

negativity condition, however, vector 𝑥 no 
components may becomes less than zero. Because 

of this, a method named the minimal proportion test 

is required to determine the non-basic’s (𝑥N)j∗ 

maximum movement while still keeping all of 𝑥 
viable. Two aspects must be included in this ratio 
test. 

1. Firstly, a basic variable (𝑥B)i*k reduces to 0 
(lower bound). 

2. The basic variable, (𝑥B)k rises to an integer. 
If we were to apply these both aspects to each 

k  = k +  fk ,  0   fk   1 (17) other, we’d do the following: 

Supposing bump (𝑥B)k up to the closest integer,  = min 
  

i   
 

 

 (19) 

say ([𝛽] + 1). We might raise a non-basic variable 
on the basis of concept of suboptimal elucidations, 

1 
i k|  

j* >0  
 

j*  

such as (𝑥N)j∗, exceeding the zero limit, given that 

𝛼kj∗  is a negative component of the vector 𝛼j∗. Let 

∆j∗ be total movement of the non-variable (𝑥N)j∗, 

and therefore the scalar (𝑥B)k numerical value is an 

integer ∆j∗   can then be stated using Eqn. (16) as 

2 =  
j* (20) 

Amount of non-basic (𝑥N)j∗ release that 

allows vector x to remain viable despite its zero- 

bound, depends on the 𝜃∗-ratio test as can be seen 

below 
follows. 

 = 
1  fk 

 
 

 * = min ( 1, 2 ) 
* 

(21) 

f 
* 

 (18) evidently,   if      = 1 ,   one   of   the   fundamental 
kj* 

Non-basics remain at a constant 0. As may be 

observed, by replacing (18) into (16) for (𝑥N)j∗. 

When we take into consideration (17)’s division of 

the number 𝑥, then we get 

(𝑥B)k = [𝛽] + 1 
Therefore, now (𝑥B)k becomes an integer. 

The importance of a non-basic variable in 
integerizing the equivalent basic variable has now 

been established. As a consequence, the following 

variables (𝑥B)i*k will reach its lower limit prior to 

the integer value for (𝑥B)k . If  * = 2 , feasibility is 

preserved since the fundamental variable (𝑥B)k will 

have an integer value. In the same way, we may 
decrease the numerical value of the fundamental 

variable (𝑥B)k to its nearest integer [𝛽k]. Any 

positive 𝛼j∗-value in this situation corresponds to 

the movement amount caused by the (𝑥N)j∗ non- 

basic variable and hence 

result is required to prove that the integerizing 

procedure must operate with a non-integer variable. 

Theorem. 

 f   = 
fk 

 

kj 

(22) 

If the MILP issue (1)-(4) has an optimum answer, 

then non-basic variables must be included in the 

solution. ( xN ) j , j =  n , should be non-integer 

variables. 

Proof. 
Using slack variables as a continuous in solving the 

Ratio test 𝜃∗ is still required to keep things 

feasible. , reflect the particular non basic variable, 

as represented in equation (18) and (22). The vector 

𝛼’s corresponding element are the sole factor that 

researcher must consider during their operations. A 

vector 𝛼j may be represented as 

issue (except in the case of equality constraints,  j = B
1
a j , j =  n  m (23) 

which are non-integer). Assuming xB is a basic 

variables of vector including total slack variables, 

so variables becomes integer values as they are 

included in the non-basic vector 𝑥N. 

As the scalar’s (𝑥N)j∗    numerical value 

As a result, to acquire a certain vector j 

element one must first identify the associated 

matrix [𝐵]–1 columns. Let’s say that we want to 

find out the 𝛼kj∗ value allowing 𝑣T become the 𝑘- 
th column vector of [𝐵]–1, we will get 

increases to ∆j∗, so will the additional components 
(𝑥B)i*k  of vector 𝑥B. Thus, if vector 𝛼j∗, i.e., 𝛼j∗ 

vT = eT B 1 (24) 

for 𝑖 ≠ 𝑘, some elements shows positive result. 

Thus, the 𝑥B element starts decreasing and may 

After that, we can calculate 𝛼kj∗ ’s numerical value 

from 

potentially reach 0 at some point. Due to the non- kj* = vT
 a (25) 
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Eqns. (24) and (25) are stated to as pricing 

operation in Linear Programming (LP). 𝑑j 

represents the vector of decreased prices. It is 

utilized to assess the decrease in the objective 

function value produced by a non-basic variable 

releasing from its bounds. When choosing which 

non-basic to release in the integerization procedure, 

especial consideration must be taken to the vector 

𝑑j, so that degradation is diminished. A lower limit 

on any integer-equivalent solution may be found 

using the minimal continuous solution. The amount 
of movement in a given non-basic variable as given 

in Eqn. (18) or (22), is, nevertheless, influenced by 

the associated 𝛼j-vector element. As a result, 

releasing a non-basic variable (𝑥N)j∗ results in 

objective function reduced value. When 

determining how to integerize 𝑥, the ratio is: 

 
(26) 

 

Where |𝑎| implies the definite value of scalar 𝑎. 

To keep the best continuous solution as 

close to zero as possible, we apply the following 

technique to determine which non-basic variable 

raises from its zero limit, that is, 
d  

degenerate solution would allow us to liberate a 

non-basic variable from the constraints of Eqn. (30) 

and swap it for a basic variable of the same type 

after integerization. 

The basic variable, (𝑥B)k is being 

integerized right now, and as a result, the nonbasic 

variable, (𝑐N)j∗ , is being liberated from its zero- 

bound. Assume that (𝑥N)j∗’s maximum movement 

fulfills  * =  * . 

In order to take use of the method of 

modifying the basis, (𝑥B)k must be integer valued, 

we transfer (𝑥N)j∗ keen on 𝐵 (to substitute (𝑥B)k) 

and integer-valued (𝑥B)k into 𝑆 to ensure that the 

integer solution remains intact. Now that a 
fundamental variable has reached its limit, we have 
a degenerate solution. With a fresh set of integers, 

the process of integerizing continues [𝐵, 𝑆]. As a 
result, total number of integral variables becomes 
superbasic. 

 

4. THE ALGORITHM 

The following approach may be used to 

find a suboptimal but integer-feasible solution from 

an optimum continuous solution once the relaxed 

issue has been solved. 
min       k    , j = 1, , n  m (27) Let 

j    
 kj*   x = [x] + f , 0  f  1 

Writing constraints for non-basic (𝑁), 

basic (𝐵), and superbasic (𝑆), variables may be 

done using a “active constraint” technique and the 

splitting of the constraints equivalent to these three 

be the (continuous) solution of the tranquil issue, 

[𝑥] is the integer component of non-integer variable 

𝑥 and 𝑓 is the fractional component. 
Step 1. Obtaining the smallest integer feasibility 

variables. 

 B S N  
 xb  

 b    xN  =   

 

 
(28) 

of row i*, 

Step 2.  Compute 
vT = eT B 1 

i*  = min{ fi ,1   fi } 

 I  
  bN  i* i* 

xS  

or 

this operation is named as pricing 

operation 
Bx + Sx + Nx = b (29) Step 3. Compute  = vT

 a 
b S N ij i*    j 

xN = bN (30) With j match up to min   d 
j     

It is supposed that matrix 𝐵 would be non singular 

and square matrix but we obtained as follows. 

j   
    ij    

xB =   WxS   xN (31) 
I. For non-basic 𝑗 at lower limit 

If  
ij   

< 0 and 
i*  

=  f
i  
determine 

Where: (1   ) 

 = B 1
b 

W = B 1
S 

(32) 

(33) 

 = i*  

ij 
If  > 0 and   = 1  f determine 

 = B 1
N (34) ij i* i 

Non-basic variables are being kept to their 

limit in expression (30). Eqn. (31), which uses the 

integerizing technique mentioned in the preceding 

section and suited for MILP problems, makes it 

clear that this strategy may be put into action. A 

 = 
(1  i*) 

ij 

dk 

kj* 
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B 

B 

B j* 

 

 
 

If ij   < 0 and i*  = 1  fi determine u
i '  

 x
B   

 

 
B ' = min  i '   

 =   i*  

ij 

i ' i* ij* >0  

C ' =  

ij*      

If   > 0 and  = f determine The 𝑗∗ maximum movement rely on: 
ij 

 = i* 

ij 

i* i 
 * = min( A ', B ', C ') 

Step 6. Switching basis for all probabilities 

1. If 𝐴 or 𝐴' 
II. For non-basic 𝑗 at upper limit 

If  < 0 and   = 1  f determine 
• x befits non-basic at lower limit l 

i ' 

ij i* i • x   befits basic (substitutes x ) 
(1   ) j* Bi ' 

 = i*  

ij 

If   > 0 and   = f 

 

 
determine 

• xi* remains basic non-integer 

2. If 𝐵 or 𝐵' 
ij i* i 

 = 
(1  i* ) 

ij 

• x becomes non-basic at upper 
i ' 

limit ui ' 

If  > 0 and   = 1  f determine • x becomes basic (replaces x ) 
i ' 

ij i* i 

 = i* 

ij 

• xi* remains basic non-integer 

3. If 𝐶 or 𝐶' 

If  < 0 and   = f determine • x j* befits basic (replaces xi* ) 
ij i* i 

 • xi* becomes super-basic at integer- 

 =   i*    

ij 

Else, go to available superbasic 𝑗 or 

non integer non basic variable. Finally 

column 𝑗∗ is elevated from LB or 

reduced from UB. If this never happen, 

then proceed to the next 𝑖∗. 

Step 4.  Compute 

valued 

repeat from step 1. 

 

5. COMPUTATIONAL RESULT 

EXIT -- OPTIMAL SOLUTION FOUND. 

NO. OF ITERATIONS 67 

 
j* 

= B 1  OBJECTIVE VALUE 4.5000000000000E+02 

i.e., solve B  j* =  j*  for  j*. 

Step 5. Ratio test: Because non-basic 𝑗∗ has been 

released from its limits, there are three 
possible values for the basic variables. 

If 𝑗∗ lower limit 

Let 

NORM OF X  8.250E+02 NORM 

OF PI 1.735E+02 

1 

PROBLEM NAME P OBJECTIVE 

VALUE 4.5000000000E+02 

A = min  xB  li '  STATUS OPTIMAL SOLN 
 

i ' i* ij* >0  
i ' 

ij*       ITERATION 67 

B =  min  ui '   xB     
 

 

 Table 1: The values of variable 
 

i ' i* ij* <0  

C =  

ij* 

i '    

 

The 𝑗∗ maximum movement rely on: 

 * = min( A, B, C) 

If 𝑗∗ upper limit 

Suppose 
xB  li '  

A' = min  i '  
i ' i* ij* <0  

ij*  

i ' 

j* 

1 X011 0.00000 

2 X021 0.00000 

3 X031 0.00000 

4 X041 1.00000 

5 X012 0.00000 

6 X022 0.00000 

7 X032 1.00000 

8 X042 0.00000 

9 X101 1.00000 
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vehicles. In a transportation system, this issue 

might arise when a large number of vehicles must 

pass through a node or client. Another possibility is 

that the order in certain nodes exceeds the fleet’s 

total capacity. For the purpose of this research, we 

have sought to optimize the fleet’s capacity 

utilization. As a result, numerous vehicles might 

meet the needs of certain clients. The provided 

approach is capable of finding the most cost- 

effective routes for a fleet. It is clear that the 

suggested PVRP model can be solved using the 

PSO method, as shown by the simulation results. 

The PSO parameters and programming 

implementation may be improved, though, since it 

was not the greatest. A better solution and a shorter 

calculation time are now possible thanks to these 

additional efforts. Additional studies should be 

done to expand the approach to more complex real- 

world issues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
6. CONCLUSION 

The prior models failed to consider the 

true complexity of many real-world routing issues. 

To suit a variety of practical needs, we’ve 

developed a PVRP, or periodic vehicle routing 

problem in this research, incorporating the PVRP’s 

well-known models. Furthermore, it incorporates 

plenty of formerly unconsidered upgrades from 

prior models. This paper has presented a split 

service of CPVRP that includes the ability to divide 

a customer’s transportation needs across several 

REFERENCES: 

[1] N. Christofides, A. Mingozzi, and P. Toth, 

“The Vehicle Routing Problem,” in 

Combinatorial Optimization, N. 

Christofides, A. Mingozzi, P. Toth, and C. 

Sandi, Eds. Wiley, 1978, pp. 315–338. 

[2] P. Toth and D. Vigo, The vehicle routing 

problem. SIAM, 2002. 

[3] M. Ostermeier, T. Henke, A. Hübner, and 

G. Wäscher, “Multi-compartment vehicle 

routing problems: State-of-the-art, 

modeling framework and future directions,” 

Eur. J. Oper. Res., vol. 292, no. 3, pp. 799– 

817, 2021. 

[4] H. Li, J. Chen, F. Wang, and M. Bai, 

“Ground-vehicle and unmanned-aerial- 

vehicle routing problems from two-echelon 

scheme perspective: A review,” Eur. J. 

Oper. Res., vol. 294, no. 3, pp. 1078–1095, 

2021. 

[5] G. Laporte and F. Semet, “Classical 

Heuristics for the Capacitated VRP,” in The 

Vehicle Routing Problem, P. Toth and D. 

Vigo, Eds. SIAM, 2002, pp. 109–128. 

[6] J.-F. Cordeau, G. Desaulniers, J. 

Desrosiers, M. M. Solomon, and F. Soumis, 

“The VRP with Time Windows,” in The 

Vehicle Routing Problem, P. Toth and D. 

Vigo, Eds. Philadelpia, Pa: SIAM 

Monographs on Discrete Mathematics and 

Applications, 2002, pp. 157–193. 

[7] N. Norouzi, R. Tavakkoli-Moghaddam, M. 

Ghazanfari, M. Alinaghian, and A. 

Salamatbakhsh, “A new multi-objective 

10 X201 0.00000 

11 X301 0.00000 

12 X401 0.00000 

13 X102 1.00000 

14 X202 0.00000 

15 X302 0.00000 

16 X402 0.00000 

17 X121 1.00000 

18 X131 0.00000 

19 X141 0.00000 

20 X122 0.00000 

21 X132 0.00000 

22 X142 0.00000 

23 X211 1.00000 

24 X231 0.00000 

25 X241 0.00000 

26 X212 0.00000 

27 X232 0.00000 

28 X242 0.00000 

29 X311 0.00000 

30 X321 0.00000 

31 X341 0.00000 

32 X312 1.00000 

33 X322 0.00000 

34 X342 0.00000 

35 X411 1.00000 

36 X421 0.00000 

37 X431 0.00000 

38 X412 0.00000 

39 X422 0.00000 

40 X432 0.00000 

41 L11 0.00000 

42 L21 325.00000 

43 L31 825.00000 

44 L41 0.00000 

45 L12 825.00000 

46 L22 0.00000 

47 L32 825.00000 

48 L42 0.00000 

49 B -1.00000 

 



Journal of Theoretical and Applied Information Technology 
30th June 2022. Vol.100. No 12 

© 2022 Little Lion Scientific 

3942 

 

 

 
 

 

competitive open vehicle routing problem 

solved by particle swarm optimization,” 

Networks Spat. Econ., vol. 12, no. 4, pp. 

609–633, 2012. 

[8] M. Savelsbergh and M. Sol, “Drive: 

Dynamic routing of independent vehicles,” 

Oper. Res., vol. 46, no. 4, pp. 474–490, 

1998. 

[9] M. W. P. Savelsbergh and M. Sol, “The 

general pickup and delivery problem,” 

Transp. Sci., vol. 29, no. 1, pp. 17–29, 

1995. 

[10] G. Hasle, “Heuristics for rich VRP 

models,” in Seminar at GERAD, 2003, vol. 

30, p. 2003. 

[11] H. N. Psaraftis, “Dynamic vehicle routing: 

Status and prospects,” Ann. Oper. Res., vol. 

61, no. 1, pp. 143–164, 1995. 

[12] H. N. Psaraftis, “Dynamic vehicle routing 

problems,” Veh. routing Methods Stud., vol. 

16, pp. 223–248, 1988. 

[13] R. Tavakkoli-Moghaddam, N. Safaei, M. 

M. O. Kah, and M. Rabbani, “A new 

capacitated vehicle routing problem with 

split service for minimizing fleet cost by 

simulated annealing,” J. Franklin Inst., vol. 

344, no. 5, pp. 406–425, 2007. 

[14] B. Eksioglu, A. V. Vural, and A. Reisman, 

“The vehicle routing problem: A taxonomic 

review,” Comput. Ind. Eng., vol. 57, no. 4, 

pp. 1472–1483, Nov. 2009. 

[15] R. Russell and W. Igo, “An assignment 

routing problem,” Networks, vol. 9, no. 1, 

pp. 1–17, 1979. 

[16] N. Christofides and J. E. Beasley, “The 

period routing problem,” Networks, vol. 14, 

no. 2, pp. 237–256, 1984. 

[17] M. W. Carter, J. M. Farvolden, G. Laporte, 

and J. Xu, “Solving an integrated logistics 

problem arising in grocery distribution,” 

INFOR Inf. Syst. Oper. Res., vol. 34, no. 4, 

pp. 290–306, 1996. 

[18] J. Alegre, M. Laguna, and J. Pacheco, 

“Optimizing the periodic pick-up of raw 

materials for a manufacturer of auto parts,” 

Eur. J. Oper. Res., vol. 179, no. 3, pp. 736– 

746, 2007. 

[19] E. J. Beltrami and L. D. Bodin, “Networks 

and vehicle routing for municipal waste 

collection,” Networks, vol. 4, no. 1, pp. 65– 

94, 1974. 

[20] A. Rusdiansyah and D. Tsao, “An 

integrated model of  the periodic  delivery 

problems for vending-machine supply 

chains,” J. Food Eng., vol. 70, no. 3, pp. 

421–434, 2005. 

[21] E. Hadjiconstantinou and R. Baldacci, “A 

multi-depot period vehicle routing problem 

arising in the utilities sector,” J. Oper. Res. 

Soc., vol. 49, no. 12, pp. 1239–1248, 1998. 

[22] R. Liu, X. Xie, and T. Garaix, 

“Hybridization of tabu search with feasible 

and infeasible local searches for periodic 

home health care logistics,” Omega, vol. 

47, pp. 17–32, 2014. 

[23] E. A. Silver, “An overview of heuristic 

solution methods,” J. Oper. Res. Soc., vol. 

55, no. 9, pp. 936–956, 2004. 

[24] S. Pirkwieser and G. R. Raidl, “A variable 

neighborhood search for the periodic 

vehicle routing problem with time 

windows,” in Proceedings of the 9th 

EU/meeting on metaheuristics for logistics 

and vehicle routing, Troyes, France, 2008, 

pp. 23–24. 

[25] V. C. Hemmelmayr, K. F. Doerner, and R. 

F. Hartl, “A variable neighborhood search 

heuristic for periodic routing problems,” 

Eur. J. Oper. Res., vol. 195, no. 3, pp. 791– 

802, 2009. 

[26] R. T. Moghaddam, A. M. Zohrevand, and 

K. Rafiee, “Solving a New Mathematical 

Model for a Periodic Vehicle Routing 

Problem by Particle Swarm Optimization,” 

Transp. Res. J., vol. 2, no. 1, pp. 77–87, 

2012. 

[27] P. K. Nguyen, T. G. Crainic, and M. 

Toulouse, “A hybrid generational genetic 

algorithm for the periodic vehicle routing 

problem with time windows,” J. Heuristics, 

vol. 20, no. 4, pp. 383–416, 2014. 

[28] L. Trihardani and O. A. C. Dewi, 

“Pengembangan Algoritma Hybrid 

Metaheuristik Untuk Penentuan Rute 

Pengiriman Produk Perishable,” J. Tek. 

Ind., vol. 18, no. 2, pp. 191–206, 2017. 

[29] D. Aksen, O. Kaya, F. S. Salman, and Ö. 

Tüncel, “An adaptive large neighborhood 

search algorithm for a selective and 

periodic inventory routing problem,” Eur. 

J. Oper. Res., vol. 239, no. 2, pp. 413–426, 

2014. 

[30] P. M. Francis, K. R. Smilowitz, and M. 

Tzur, “The period vehicle routing problem 

and its extensions,” in The vehicle routing 

problem: latest advances and new 

challenges, Springer, 2008, pp. 73–102. 



Journal of Theoretical and Applied Information Technology 
30th June 2022. Vol.100. No 12 

© 2022 Little Lion Scientific 

3943 

 

 

 
 

[31] T. Vidal, T. G. Crainic, M. Gendreau, N. 

Lahrichi, and W. Rei, “A hybrid genetic 

algorithm for multidepot and periodic 

vehicle routing problems,” Oper. Res., vol. 

60, no. 3, pp. 611–624, 2012. 

[32] C. Archetti, E. Fernández, and D. L. Huerta-

Muñoz, “The flexible periodic vehicle 

routing problem,” Comput. Oper. Res., vol. 

85, pp. 58–70, 2017. 

[33] R. Liu, X. Xie, V. Augusto, and C. 

Rodriguez, “Heuristic algorithms for a 

vehicle routing problem with simultaneous 

delivery and pickup and time windows in 

home health care,” Eur. J. Oper. Res., vol. 

230, no. 3, pp. 475–486, 2013. 

[34] D. Mathelinea, R. Chandrashekar, and N. F. 

A. C. Omar, “Inventory cost optimization 

through nonlinear programming with 

constraint and forecasting techniques,” in 

AIP Conference Proceedings, 2019, vol. 

2184. 

[35] P. Francis, K. Smilowitz, and M. Tzur, 

“The period vehicle routing problem with 

service choice,” Transp. Sci., vol. 40, no. 4, 

pp. 439–454, 2006. 

[36] A.-K. Rothenbächer, “Branch-and-price- 

and-cut for the periodic vehicle routing 

problem with flexible schedule structures,” 

Transp. Sci., vol. 53, no. 3, pp. 850–866, 

2019. 

[37] C. Archetti, E. Fernández, and D. L. Huerta-

Muñoz, “A two-phase solution algorithm for 

the Flexible Periodic Vehicle Routing 

Problem,” Comput. Oper. Res., vol. 99, pp. 

27–37, 2018. 

[38] M. Darvish, C. Archetti, L. C. Coelho, and 
M. G. Speranza, “Flexible two-echelon 

location routing problem,” Eur. J. Oper. 

Res., vol. 277, no. 3, pp. 1124–1136, 2019. 

[39] A. Estrada‐Moreno, M. Savelsbergh, A. A. 

Juan, and J. Panadero, “Biased‐randomized 

iterated local search for a multiperiod 

vehicle routing problem with price 

discounts for delivery flexibility,” Int. 

Trans. Oper. Res., vol. 26, no. 4, pp. 1293– 

1314, 2019. 

[40] E. Angelelli and M. G. Speranza, “The 

periodic vehicle routing problem with 

intermediate facilities,” Eur. J. Oper. Res., 

vol. 137, no. 2, pp. 233–247, 2002. 

[41] A. Goel and V. Gruhn, “A general vehicle 

routing problem,” Eur. J. Oper. Res., vol. 

191, no. 3, pp. 650–660, 2008. 

  



Journal of Theoretical and Applied Information Technology 
30th June 2022. Vol.100. No 12 

© 2022 Little Lion Scientific 

3944 

 

 

[42]  


